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1. The Parabolic Elasticity 

From the consideration of the features of a large nymber of stress relaxa- 
tion curves (relaxing stresses as functions of the time), observed with a 
Kepes consistometer when the viscous steady flow of 8 molten polymer was 
suddenly stopped, it was deduced's2 that, by assuming nonlinear (i.e., 
non-Hookean) elasticity, analytical stress-time relations are found which 
are in a good agreement with the experimental ones. 

In  particular, the following stressstrain differential law was suggested 
(the law of the parabolic elasticity) : 

d y / d Z  = ykaU-'/(% -k Zk) '  (1) 

where 1& is the relaxing shear stress, y is the shear strain associated with the 
relaxation phenomenon (not to be confused with the measurable strain of 
the Viscous flow), while &, y k ,  and a are constants characterizing the 
given real polymer at  a given temperature. 

It will be shown now that the elastic law (l), instead of being assumed, 
can be deduced from another general feature characterizing a large number 
of the experimental stress-time relationships. This feature consists in the 
following fact: a wide portion of the log-log plots of the stresses against 
the time is fairly linear, except a t  the shortest and at  the longest times. 
Thus, the following stress-time equation can be assumed as valid in a broad 
field of stress and time: 

(2) 

where t is the time (starting from the moment when the steady flow is 
stopped and the relaxation begins); deviations from the linearity of the 
log-log plots at the shortest times are accounted for by the constant to 
(which depends, thus, on the initial stress am, which is also the steady 
flow stress) ; similar deviations at the longest times are taken into account 
(also approximately) by the constant stress 'Qo, which characterizes the 
given polymer at  the given temperature, as well as the constants K and n, 
being independent of Q,. The phenomenon, already pointed out in 
former work,'e2 called relaxation isochronism provides K ,  n, Zo to be in- 
dependent (at least in a first approximation) of the particular initial stress 
characterizing any single experiment. 
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Z = K(t  + to)-" - Zo 
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From eq. (2) it is deduced that 

t + t o  = K/(Q + Qo) Illn 

dQ/dt = -n(Q + 'Qo)/(t + to) 
and 

= - (n/k'/") (Q + Qo) l + ( l / n )  

(3) 

(4) 

On the other side, let us consider the general differential equation for 
stress relaxation: 

Q = -q(dy/dt) (5 )  

= -r(dr/dQ)(dQ/dt) 

where q is a viscosity coefficient (not to be a priori identitied with any of 
the viscosities measured in the steady flow) withstanding the variations 
with the time of the ideal, nonmeasurable strain y associated, in this theory, 
with the relaxation phenomenon. As in former work, l r 2  q will be assumed to 
be constant, namely, stress- and time-independent. Considerations on this 
questionable working hypothesis were already made previously1.2 and will 
be subsequently developed in this paper. 

By combining eqs. (4) and (5)  we obtain: 

d r / d Q  = (K'l"/tln) [%/(a + Q o )  ](a + Qo)-'/~ (6) 
The matching of eq. (2) with the experimental plots of the relaxation 

stresses against the time shows that the greatest values of the parameters 
'Qo (when they can be determined) are of the order of magnitude of 10-102 
dynes/cm.2, namely, the Qo are small, when compared with the Q- 
(10c106 dynes/cm.a) and with a broad field of the measured stresses Q. 
Thus, in a wide part of the relaxation curve (except at the longest times, 
when 2& becomes of the same order of magnitude m Qo) we can assume: 

Q/(Q + Q o )  'v 1 

Then eq. (6) becomes equivalent to the elastic law (for parabolic elasticity) 
expressed by eq. (l), provided that: 

a = l /n (7) 

%k = a0 (8) 

'yk'pCkas1 = K1/"/nq (9) 

J k  = Y k / Q k  (10) 

By defining a characteristic compliance J k :  

and a characteristic relaxation time Tk: 

T k  = q J k  

from eqs. (7), (8), and (9) it follows that 
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It must be remembered that eqs. (8) and (12) are valid as far as the stress- 
time law (2) is in agreement with the experimental stress relaxation data. 
Only the matching of eq. (2) with such data permits a choice between an 
elastic law of the type described by eq: (1) or one of the type described by 
eq. (6) (or possibly some other). In the (isochronic) linear region of log 
Q versus log t (namely, when t >> to and Q >> G), such a choice is not pos- 
sible (at lea& within the limits of accuracy of the experimental data which 
are now at hand). Such accuracy, in many practical cases, is not sufficient 
to allow a sure determination of the parameter Zo itself, hence of the re- 
lated critical time defined by eq. (12), or of the ultimate time t,: 

t, = (K/Zo)l’n 

namely, the time a t  which, according to eq. (2), the relaxing stress becomes 
zero. 

It is seen, thus, that an elastic law of the type (l), or of an analytical 
type which, within a given range of the values of the data, cannot be 
distinguished from the parabolic type of eq. (l), is a consequence of the 
experimental feature that in many instances the log-log plots of the stresses 
against the time are linear. 

2. A General Theory 
All calculations suggested here and in the preceeding papers of this 

They are bound with some models, allowing the formulation of a stress- 
series’s2 have the following drawbacks. 

time equation 

defined for all values of the time t from zero up to infinity. This is a 
rather arbitrary extrapolation of the experimental data, ranging actually 
between some tenths of a second up to some hours. The upper limits of 
the time are determined by the stability of the measured substance more 
than by the patience of the observer. The investigation of a good number 
of real specimens showed that the ignorance of the actual course of the 
stress relaxation at  very short (as at very long) times makes it impossible 
to state whether or not the relaxation area has an asymptotic value for 
indefinitely increasing initial stresses a,. Any conclusion arising from a 
particular type of stress-time equation appears, then, somewhat arbitrary. 

The rather puzzling hypothesis, stressed before, of a constant viscosity 
is not essential. As far as only stress-time relationships (and related 
quantities, such as the relaxation areas A )  are coacerned, namely, when 
we are investigating quantities which are not defined by a separate con- 
sideration of the elastic and of the viscous components of the stress relaxa- 
tion phenomenon, all calculations can be carried out considering, instead 
of an elastic law d-y/dQ and of a viscosity 7 separately, a particular law 
concerning the product 

Q = f(t> 

R(Q,t) = qdT/dQ (14) 
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where both factors tl and dr/dl& can be thought as functions of the stress 
(and, possibly, of a separate time variable). 

In  order to avoid as far as possible any arbitrary assumption or extrapola- 
tion and any consideration of models, it is shown that a genelit1 theory of 
stress relaxation can be deduced only by assuming the validity of eq. (5) 
in its more general meaning. 

This meaning is the following: the relaxing stress Q is withstood only 
by another stress of a viscous type, namely, a stress given by the product of 
a viscosity function q(Q,t) by the rate of a hypothetical, nomeasurable 
internal shear. This rate of shear, in its turn, is assumed to be the product 
of an elasticity function d r / d Q  (a function, too, of the stress and the time) 
by the total derivative of the stress against the time, namely: 

dy /d t  = (dr /dQ)  - (dQ/dt) 

The variables Q and t are related to each other by the stress-time relation- 
ship, but in general we can suppose that the elasticity and the viscosity 
functions are timedependent also in some other independent way. 

When both sides of eq. (5) are multiplied by t and divided by PC, we obtain 
after some rearrangement : 

n(Q,t) = -d(log IIC)/d(log t )  = t / R  

R(Q, t )  = t/n(lE, t )  

(15) 

(16) 

Hence, the viscoelasticity function defined by eq. (14) will be: 

The function R has the dimensions of time; the function n (a number), 
defined by eq. (15), can be quite easily derived by graphic differentiation 
of the experimental log-log plots of stress against time, and both R and n 
can be, in their turn, plotted against the time or the stress. 

It is immediately seen that, in the case of a simple Maxwell body (or 
Voigt body), the R function degenerates in a constant: the classical relaxa- 
tion time of the body considered. 

Let us consider now a plot of the stress Q against R. The feature of 
the relaxation isochronism provides such plot to be a general function char- 
acterizing the given polymer at  the given temperature, defined in the 
whole isochronic region and independent of the initial stress (except a t  the 
shortest times, namely a t  the highest stresses). 

It is suggested now that this plot be taken as a characterizing element for 
the given real system. A number of experimental instances of this means 
of polymer Characterization will be given subsequently. 

The following formulas can be easily derived and proved to be useful: 

dQ/dt = -Q/R (17) 

(18) 

d r  = ( t / n T ) d a  (19) 

(20) 

A = J , W t  = JosmRdQ 

w = $;-"a& = $o&"R. (Q/V) . d d  
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While the quantities defined by eqs. (17) and (18) can be calculated from 
the relaxation data, those defined by eqs. (19) and (20), based on a separa- 
tion of the elastic components from the viscosity components, require an 
independent knowledge of the elasticity law or of the viscosity law. This 
is a general confirmation of the statement already made2 that the relaxation 
phenomena alone, as far as they are dealt with only on the basis of eq. (5), 
are not sufficient to allow a calculation of the stored elastic energy W ,  
namely, that different values of this energy can be associated with a given 
course of the relaxing stress as a function of the time. 

The analytical procedures suggested here shall be matched, in subsequent 
work in this series, with the experimental data of a number of practical 
instances, in order to evaluate their effectiveness as a means of polymer 
characterization. 
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synopsis 
The parabolic law, according to the equation dr/d'Q = rt'QQ"-'/('Q + of the 

elasticity in the relaxation phenomena of molten polymers can be deduced from the con- 
sideration of the feature that the experimental stress relaxation curves show log-log 
plots which are often linear in a broad field. A general analysis, only on the basis of the 
viscoelaatic equation 'Q = --t)(dr/dt) permita calculation of relaxation functions, which 
are suggested aa possible means of polymer characterization. 

RbllIUi5 
La loi parabolique, selon la formule dr /m = -yk'Qu-*('Q + pour 1'6laaticit.4 

associ6e aux phhombnes de dlaxation dans les polymeres fondus peut &re daui te  B 
partir de la caract6ristique exp6rimentale suivante: les diagrammes doublement log- 
arithrniques des caurbea de dlaxation exphimentales sont souvent lin6aires dam un 
domaine 6tendu. Une analyse en termes gbnbraux fondbe uniquement sur la hypothese 
de la validit.4 de la formule visc&lastique, 'Q = --t)(dr/dt) permet d'6tablir des fonctiom 
de r6laxation qui peuvent servir B caracgriser les polymbres. 

Zusammenfassung 

Das parabolische Elastizitiitsgesetz-Formel dr /m = rt'Qa-'/(& + bei den 
Relaxationserscheinungen geschmolzener Polymerer kann am dem experimentellen 
Befund abgeleitet werden, daas die Spannungsrelaxationskurven im doppeltlogarithmis- 
chen Diagramm oft iiber einen grossen Bereich linear verlaufen. Erne allgemeine, nur 
auf der Viskoelastizitatsgleichung 'Q = -q (dr /d t )  beruhende Analyse ermoglicht die 
Formulierung von Relaxatiomfunktionen, die zur Charakterisierung von Polymeren 
dienen konnen. 
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